Abstract
The optimal recognition of penicillin determinants, including amoxicillin (AX), by specific IgE antibodies is widely believed to require covalent binding to a carrier molecule. The nature of the carrier and its contribution to the antigenic determinant is not well known. Here we aimed to evaluate the specific-IgE recognition of different AX-derived structures. We studied patients with immediate hypersensitivity reactions to AX, classified as selective or cross-reactors to penicillins.
Competitive immunoassays were performed using AX itself, amoxicilloic acid, AX bound to butylamine (AXO-BA) or to human serum albumin (AXO-HSA) in the fluid phase, as inhibitors, and amoxicilloyl-poli-L-lysine (AXO-PLL) in the solid-phase. Two distinct patterns of AX recognition by IgE were found: Group A showed a higher recognition of AX itself and AX-modified components of low molecular weights, whilst Group B showed similar recognition of both unconjugated and conjugated AX. Amoxicilloic acid was poorly recognized in both groups, which reinforces the need for AX conjugation to a carrier for optimal recognition. Remarkably, IgE recognition in Group A (selective responders to AX) is influenced by the mode of binding and/or the nature of the carrier; whereas IgE in Group B (cross-responders to penicillins) recognizes AX independently of the nature of the carrier.